Ansprechpartner*in zu dieser Pressemitteilung
Prof. Dr. Georg WoltersdorfInstitut für Physik
Telefon: +49 345 55-25300
Mobil: +49 160 2038751
Kontakt
Manuela Bank-Zillmann
Telefon: +49 345 55-21004
Telefax: +49 345 55-27404
presse@uni-halle.de
Universitätsplatz 8/9
06108 Halle
Login für Redakteure
Studie in „Science“: Physiker zeigen, wie sich Frequenzen leicht vervielfachen lassen
Digitale Technologien und Geräte sind bereits heute für etwa zehn Prozent des weltweiten Stromverbrauchs verantwortlich, Tendenz stark steigend. "Es ist daher notwendig, effizientere Bauelemente für die Informationsverarbeitung zu entwickeln", sagt der Physiker Prof. Dr. Georg Woltersdorf von der MLU.
Typischerweise werden die für den Betrieb der Geräte notwendigen Signale im Gigahertz-Frequenzbereich durch nicht-lineare elektronische Schaltungen erzeugt. Das Forscherteam der MLU hat nun einen Weg gefunden, wie das auch ohne elektronische Bauelemente innerhalb eines magnetischen Materials möglich ist. Die Magnetisierung wird dabei durch eine Quelle im niederfrequenten Megahertz-Bereich angeregt. Diese Quelle generiert - durch den neu entdeckten Effekt - gezielt mehrere Frequenzkomponenten, die jeweils einem Vielfachen der Anregungsfrequenz entsprechen. Diese umfassen einen Bereich von sechs Oktaven und erreichen bis zu mehrere Gigahertz. "Das ist in etwa so, als ob man bei einem Klavier den tiefsten Ton auf der Tastatur anschlägt und dabei zusätzlich auch die entsprechenden harmonischen Töne der höheren Oktaven erklingen", so Woltersdorf weiter.
Erklärt wird der überraschende Effekt der Frequenzmultiplikation durch synchronisierte Schaltvorgänge der dynamischen Magnetisierung auf der Mikrometerskala. "Verschiedene Bereiche schalten dabei nicht gleichzeitig, sondern werden durch benachbarte Bereiche angestoßen, ähnlich wie beim Domino ein Stein den anderen umstößt", erklärt Erst-Autor Chris Körner vom Institut für Physik der MLU.
Die Entdeckung könnte dabei helfen, digitale Technologien in Zukunft energieeffizienter zu machen. Sie ist auch für neue Anwendungen von Interesse: Aktuelle Mikroelektronik nutzt die Ladung der Elektronen als Informationsträger. Ein großer Nachteil dieser Methode ist, dass das Verschieben von elektrischer Ladung Wärme freisetzt und viel Energie benötigt. Ein vielversprechender Ausweg könnte die Spin-Elektronik sein. Diese nutzt zusätzlich zur Ladung des Elektrons auch dessen magnetisches Moment, den sogenannten Spin, und erlaubt prinzipiell eine deutliche Verbesserung der Energieeffizienz. Der neu entdeckte Effekt könnte platzsparende und effiziente Frequenzquellen für die Spin-Elektronik im Gigahertz-Bereich ermöglichen.
Die Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Europäischen Forschungsrat gefördert.
Studie: Körner C., Dreyer R. Wagener M., Liebing N., Bauer H.G. & Woltersdorf G. Frequency multiplication by collective nanoscale spin wave dynamics. Science (2022). doi: 10.1126/science.abm6044